Calculation of beam quality correction factors for particle beams using Gate/Geant4

Guillaume Houyoux Radiophysics and MRI physics laboratory Université Libre de Bruxelles - Institut Jules Bordet

HÔPITAL UNIVERSITAIRE DE BRUXELLES ACADEMISCH ZIEKENHUIS BRUSSEL

HUB

INSTITUT INSTITUUT INSTITUUT INSTITUUT

1) This project is in collaboration with *IBA Dosimetry*

Energy	99 MeV	100 MeV	101 MeV
Range	7.60 cm	7.74 cm	7.88 cm

Proteus One (IBA)

It becomes therefore fundamental to use a calibrated proton beam to guarantee an optimal therapy treatment

H.U.B

The ionization current is directly related to the

dose deposited inside the air cavity

H.U.B

5

Applications : Simulates the passage of radiation through matter

- High Energy Physics (LHC)
- Space and Radiation Science
- Medical Physics
- Medical imaging devices
- Imaging reconstruction algorithms
- Dose calculation in radiation therapy

Determination of kQ factors for known ionization chambers

kQ factor for PPC-05 and PPC-40

- Within error bars, the kQ factor has a value around 1
- Nuclear reactions lead to a decrease of the kQ at high proton beam energies
- General agreement of the results within0.6 %
- Larger deviations at low energies for the PPC-05

$$k_{Q,Q_0} \propto \frac{f_Q}{f_{Q_0}}$$
 where $f_Q = \frac{D_w}{D_c}$

- 1) The value of the f_Q factor can be sensitive to the version of Geant4.
- 2) This sensitivity can depend on :
 - The ionization chamber
 - The energy regime considered

The origin of these deviations is currently studied.

9

INSTITUT JULES BORDET INSTITUUT

How does the geometry of an IC impact the value of the k_Q ?

In an engineering point of view, two ionization chambers of the same model cannot be identical

Dimension can vary up to ~ 10 %

Does it impact the value of the kQ factor ?

Assumption : "An ionization chamber is a cylindrical air cavity

surrounded by as single layer of material called the body"

Parameter	Initial dimension	
1) Height of the air cavity	2 mm	
2) Radius of the air cavity	8 mm	
3) Lateral thickness of the body	10 mm	
4) Size of the entrance window	1 mm	
5) Size of the exit window	10 mm	
6) Composition of the body	PEEK	

INSTITUT JULES BORDET INSTITUUT

H.U.B

- > We used a simplified geometry (only 2 pieces, no electrodes, ..)
- > The parameters were modified 1 at the time.
- > Only small variations (max. 10 %) were applied.
- > Photon simulations ongoing to determine the full kQ factor.

Cross section PPC-40

- 1. We recovered k_{Q,Q_0} in protons for known ionization chambers using Gate as Monte Carlo simulation tool.
 - \succ The k_{Q,Q_0} factor can be different than 1 at high proton energies
 - The reading of the dose value on an ionization chamber must be corrected when using them for proton therapy
- 2. We studied how small geometrical variation could affect the k_{Q,Q_0} factor.
 - No significant deviations observed so far
 - \succ A single k_{Q,Q_0} factor can be applied to every ionization chamber of the same type
 - The model should be complexified for accurate comparison
 - Photon calculations ongoing

- Nick Reynaert
- Sébastien Penninckx
- Dirk Van Gestel

- Kevin Souris
- Victor De Beco
- Gaëtan Duchene
- Alexandre Wattelar
- Séverine Rossomme
- Liu Hong

UCLouvain

- Jean Bouchat
- David Remacle
- Yanis Chauvel
- Frédéric Péters

- Edmond Sterpin
- Marina Orts
- Sylvain Deffet
- Lies Verpoest

H.U.B

Calculation of beam quality correction factors for particle beams using Gate/Geant4

Guillaume.Houyoux@ulb.be

HÔPITAL UNIVERSITAIRE DE BRUXELLES ACADEMISCH ZIEKENHUIS BRUSSEL

